
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41104 17

Hiding Virtualization from Attacks

Navaneetha M
1
, Dr. M. Shiva Kumar

2

Assistant Professor, CSE, CMR Institute of Technology, Bangalore, Karnataka, India
 1

Professor, CSE, VSB Engineering College, Karur, Tamilnadu, India
 2

Abstract: This paper presents a new concept of security assessment methodology for the hiding of virtualization from

the attacks and several areas of its application. Virtual machine environments (VMEs) let a user or administrator sprint

one or more guest operating systems on top of a host operating system—for example, three or four instances of the

Microsoft Windows operating system could run as caller systems on a Linux host operating system on a single PC or

server. Such environments are widely used as patrons or servers in a diversity of commercial, administration, and

martial organizations. Beyond normal business operations, security researchers and honey pot technologies often

leverage VMEs to analyse malicious code discovered in the feral to determine its functionality, business model, origin,

and author. Because VMEs offer useful monitoring and isolation capabilities, malware researchers are increasingly

reliant on these products to conduct their trade.

Keywords: Include at least 4 keywords or phrases.

I. INTRODUCTION

With security researchers relying on VMEs in their

analysis work, attackers and their malicious code have a

momentous stake in detecting the presence of a virtual

machine. In addition, a malware correlate can use the

“snapshot” capabilities of some VMEs to create a pristine

uninfected representation, infect that machine, observe the

infection’s impact, and restore the system to a pristine

state quickly and effortlessly so that the researcher can

move on to review another specimen. Indeed, various

malware researchers in antivirus and antispyware

companies are automating malicious code analysis with

large numbers of VMEs that have such snapshot

capabilities.

With security researchers relying on VMEs in their

analysis work, attackers and their malicious code have a

significant stake in detecting the presence of a virtual

machine. Virtualization, by its very nature, creates systems

that have different characteristics from real machines.

From a theoretical perspective, any difference between the

virtual and the real could lead to a fingerprinting panorama

for attackers. This article focuses on detection techniques

and mitigation options for the most widely deployed VME

product today, VMware.

II. THREATS

Here the hackers may play a role in changing or modifying

the data or information which will be shared between

different guests of different operating systems on a host

operating system. The VME will be used by them in these

activities. Attackers frequently use VME enlightening to

mystify security researchers. Because malicious code

analysis experts repeatedly use VMEs when dissecting

malicious programs, some of the most cutting-edge

malware specimens can detect virtual machine repression

and modify their behaviour to hide the code’s full

functionality. VME-detecting malware might even behave

in an entirely benign mode inside a VME, to the point that

a malware researcher might not realize its true destructive

nature. When this detection is coupled with existing code-

obfuscation techniques, it can be very difficult for

researchers to identify the malicious code’s full behaviour,

thus causing costly delays for antivirus vendors and

leaving millions of computer systems vulnerable.

VME recognition could evolve into a dangerous game of

cat and mouse if attackers can discover flaws in the

underlying VME code. Essentially, VMEs are a complex

layer of software that usually tries to isolate the host and

guest operating systems. Software developers know that

any major, complex software package often has security

flaws. If an attacker can find a flaw in the VME-provided

host/ guest isolation, virtual machine detection could

become a significant security risk as a precursor to VME

escape—a procedure in which malicious code running

inside a guest machine can escape and begin running on

the host. Although no public VME escape tools are

available today, such attacks are theoretically possible and

are an active area of research. In a production server

environment, attackers who discover a VME can look for

exploits to escape the guest and attempt to break into other

guest or host server systems. Likewise, malicious code on

a guest machine in a production client environment could

try to infect other guest systems.

III. VME GRATITUDE TECHNIQUES

The most popular VMEs today implement virtualized x86

PC systems as guest machines running on top of x86 host

systems. Each guest has a view of a virtualized processor

and its own virtualized hardware, which makes the

software running inside a guest machine appear to run on a

completely separate machine from the host. To detect

VMware, malware typically relies on one of two different

aspects.

IV. VMWARE COMMUNICATIONS STRAIT

VMware allows for communication between host and

guest operating systems via a custom communications

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41104 18

channel hard-coded into all major VMware products. This

channel lets the guest and host operating systems interact

for a variety of functions, including improved GUI

performance, support for moving data in and out of the

host clipboard, and dragging and dropping files between

guest and host.

As part of our research at Intel guardians, we’ve

extensively studied the protocol this communications

channel uses to understand how malicious code interacts

with the channel. Two years ago, in an incident response

engagement for a client infected with malware, we

discovered a specimen with a small snippet of code that

checked for this communications channel’s presence. We

discovered the code only because the executable exhibited

noticeably different behaviour than we expected when it

ran in the VME. The executable carrying this code falls

into a class of malicious software known as cascading file

droppers .A file dropper is simply an executable that

carries another program as encoded data and, when

executed, decodes that data, writes it to another file, and

(usually) executes it. In the case of a cascading file

dropper, the dropped file itself is also a file dropper, a nice

recursive twist often found in modern malware.

When we executed the program in a virtual machine in our

investigation, nothing appeared to happen. But upon closer

examination, we found that when the second stage of the

cascade executed, the following code snippet attempted to

detect the presence of VMware by invoking the VMware

communications channel:

MOV EAX, 564D5868 <—

“VMXh”

MOV EBX, 0

MOV ECX, 0A

MOV EDX, 5658 <— “VX”

IN EAX, DX <— Check for

VMWare

CMP EBX, 564D5868

In this machine language snippet, the program first loads

the hexadecimal value 564D5868 into register EAX. This

value, which is the equivalent of ASCII “VMXh”, is hard-

coded into VMware and represents the magical incantation

required to invoke the communications channel, acting

rather like a fixed password for the channel. Next, the

program loads the number zero into register EBX, clearing

out the place where our result will be stored later. Then, it

loads the value 10 (hexadecimal 0A) into register ECX,

which will tell the VMware communications channel what

we want to do. (The 0A value indicates that we want to

perform a VMware version check.) We then load into

register EDX a value of 5658 (which is ASCII “VX”), a

specialized hardware port associated with VMware. After

initializing our registers in this way, the program is ready

to test for the presence of VMware by using the IN

instruction.

An x86 processor normally uses the IN instruction to read

data from a hardware device such as a modem, but

VMware has extended the IN instruction’s capabilities for

guest machines to implement its communications channel.

When a program calls the IN instruction to pull data from

port “VX” while register EAX holds “VMXh,” for

example, VMware traps the I/O call. Instead of really

reading data from that port, VMware moves the magic

value “VMXh” into register EBX. Thus, a simple compare

of register EBX with “VMXh” can tell us whether our

code is running in a VMware guest. In a VMware guest

machine, our comparison will evaluate to positive, but in a

machine that isn’t a VMware guest, these instructions will

trigger exception-handling code, which is the actual

payload of the malware itself. The use of this type of

detection code in this world shows that the computer

underground is well aware of VMware’s widespread use

in malicious code research, and that easily detectable

VMEs are becoming a liability for malware researchers.

Another publicly released tool called Jerry.c by Tobias

Klein also identifies the presence of a VME with the

technique we just described in our research; we’ve found

that detecting the VMware communications channel is the

single most popular method for VME detection today.

V. TAKING THE RED PILL

Beyond measuring the IN command’s specialized

behaviour in VMware, other methods for VME detection

exist. Because the guest operating system is virtualized by

software running on the host operating system and shares

the same physical memory, a VME typically introduces

some differences in the location of mapped global items

in memory. In particular, as John Robin and Cynthia

Irvine originally described

(www.cs.nps.navy.mil/people/faculty/irvine/publications/

2000/VMM-usenix00-0611.pdf), the locations of the

Interrupt Descriptor Table (IDT), the Global Descriptor

Table (GDT), and the Local Descriptor Table (LDT)

predictably vary between host operating systems and guest

machines. By looking at the memory locations of these

critical operating system jects, an attacker or malicious

code could detect a virtual machine.

The first publicly released tool to use this technique was

the Red Pill, which security researcher Joanna Rutkowska

released in November 2004 to inspect the contents of the

Interrupt Descriptor Table Register (IDTR) via the SIDT

(Store the Interrupt Descriptor Table) instruction.

Rutkowska observed that on VMware guest machines, the

IDT is typically located at 0xffXXXXXX, whereas for

host operating systems, it’s far lower in memory. The Red

Pill program deduces that it’s running in a guest machine

if the IDTR is greater than 0xd0000000. Our team found

that the results were highly accurate for VMware running

in a variety of Linux and Windows operating systems.

Likewise, Scoopy—another program from Klein—looks at

the location of the Interrupt Descriptor Table, the Global

Descriptor Table, and the Local Descriptor Table using

similar techniques to the Red Pill.

It’s value noting that many of these same memory

anomalies appear in multiprocessor or multicore

environments as well. Therefore, as multicore processors

become increasingly prevalent, this VME detection

method will become increasingly inaccurate, possibly

forcing attackers to rely on the already popular VMware

communications channel detection technique.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41104 19

VI. MITIGATION TECHNIQUES: EVIDENCE OF

NOTION

To dodge VME-detecting malware, researchers can rely

on several different methods to disguise a virtual machine.

We’ve identified two particularly useful approaches to foil

the most popular VME detection mechanisms used by

malware.

VII. UNDOCUMENTED VMWARE OPTIONS

VMware VMX configuration files contain various

parameters for a guest machine that a VMware

administrator can change. This file is typically located in

the host operating system, and it controls various settings

for the guest machine.

A long list of VMX configuration parameters can be

changed or added to the VMX file. (See

www.vmware.com/community/thread.jspa?thread

ID=37190&tstart=0, www.vmts.net/vmbkmanual.htm, and

www.easyvmx.com/expertform.shtml for some well-

documented features and settings.) Through various

sources and experiments, we’ve also identified several

undocumented configuration options that can control or

eliminate behaviours that allow VMware detection. For

example, setting the following parameters in the VMX file

will stop Jerry.c from detecting VMware by tweaking the

behaviour of the communications channel version-check

functionality:

isolation.tools.getPtrLoc

ation.disable = “TRUE”

isolation.tools.setPtrLoc

ation.disable = “TRUE”

isolation.tools.setVersio

n.disable = “TRUE”

isolation.tools.getVersio

n.disable = “TRUE”

Although the isolation. tools.setVersion and get Version

configuration options also prevent Jerry.c’s detection

method from working; they don’t stop the IDT-based

detection method that the Red Pill and Scoopy use. To

prevent both from detecting the presence of VMware, we

must change several additional VMX configuration

properties:

isolation.tools.getPtrLoc

ation.disable = “TRUE”

isolation.tools.setPtrLoc

ation.disable = “TRUE”

isolation.tools.setVersio

n.disable = “TRUE”

isolation.tools.getVersio

n.disable = “TRUE”

monitor_control.disable_d

irectexec = “TRUE”

monitor_control.disable_c

hksimd = “TRUE”

monitor_control.disable_n

treloc = “TRUE”

monitor_control.disable_s

elfmod = “TRUE”

monitor_control.disable_r

eloc = “TRUE”

monitor_control.disable_b

tinout = “TRUE”

monitor_control.disable_b

tmemspace = “TRUE”

monitor_control.disable_b

tpriv = “TRUE”

monitor_control.disable_b

tseg = “TRUE”

These specific settings alter VMware’s memory-relocation

functionality and also modify its binary translation (BT)

functionality. BT is the method by which VMware

virtualizes systems—by altering some of the guest’s

machine language instructions before they have a chance

to execute in the host. Although setting these configuration

options will stop local detection of VMware via Red Pill

and Scoopy, they’re neither documented nor officially

supported by VMware, so the full impact on the guest

system’s functionality isn’t well known. Furthermore, an

organization that uses guests with such configurations

won’t likely be able to get trader support for their

installations using these options. These VMX file-

configuration changes can block the most popular

detection techniques in current use, but the guest machine

configuration severely restricts functionality, thus

degrading or disabling many of the ease-of-use features

VMware provides, such as drag-and-drop, cut and- paste

via the clipboard, and shared file directories. Fortunately,

malicious code researchers rarely require such

functionality. A stealthy guest is less useful for general-

purpose computing, but is adequate for most malware

researchers who simply want to infect a machine to inspect

malicious code functionality.

VIII. VARYING THE MAGIC VALUE

Because of the undesirable side effects caused when a

researcher or administrator uses the VMX file

configuration options to mitigate detection, we searched

for an alternative method to thwart VMware detection.

Knowing that Jerry. c-style detection of VMware’s

command channel is the most prevalent attacker method,

our research focused on blocking this technique. One

effective method we found was to disable or change (by

patching the VMware binary executable file) the magic

value of VMXh associated with the communications

channel. Perhaps the best-known implementation of binary

patching for this purpose is Kostya Kortchinsky’s Honey-

VMware patch (http://honeynet.rstack.org/reports/r2005 2.

html). This tool only disables the command channel in the

Linux version of VMware Workstation 5.0, but the

concepts should apply to all versions of VMware and can

be leveraged to disable the command channel as well as

change its characteristics. Unfortunately, both the host-

side VMware program itself and the guest program’s

VMware tools need modification to alter the VMXh value.

Perhaps future versions of VMware will make this value

adjustable in both the guest and the host. As part of our

research, we developed a tool called VMmutate, which

alters the VMware binary and searches through a VMware

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41104 20

disk image, selectively modifying each instance of the

VMXh value to a user-defined alternative. In a file as large

as most multi gigabyte VMware disk images, a program

like VMmutate will likely find VMXh numerous times,

simply by chance and often having nothing to do with the

VMware communications channel. To avoid false

positives that would alter non-communications channel

VMXh instances, VMmutate contains code that looks at

the value’s context before altering it. Although VMmutate

is still beta-level software, modifying the command

channel is a feasible method for disguising virtual

machines.

Although we’ve successfully blocked VME detection by

using VMware’s undocumented features and modifying

the VMware binary program, both come with a price: a

loss of functionality. Furthermore, VME detection is

indeed an arms race. Although the techniques covered in

this article stop VME detection by most of today’s

malware, computer attackers are a clever bunch, and

they’ll surely raise the stakes by devising other detection

mechanisms. Although VME detection is a budding area

of research, we wholeheartedly expect malicious software

and attackers to continue to leverage this information

against their targets.

IX. CONCLUSION

The paper titled “Hiding Virtualization from attacks” is

entirely a research work; here we have concentrated only

on the issues of attacks and preventions. Further identity

and the profile of attacks is to be taken into consideration.

ACKNOWLEDGMENT

The paper entitled “HIDING VIRTUALIZATION FROM

ATTACKS” Is the research field of Dr. M. Shiva Kumar,

and M. Navaneetha, Dr. M. Shiva Kumar has got good

interest in the field of information security.

REFERENCES

[1] O.S. Saydjari, “Multilevel Security: Reprise,” IEEE Security &
Privacy, vol. 2, no. 5, 2004.

[2] R.T. Mercuri, “Computer Security: Quality Rather than Quantity,”

Comm. ACM, vol. 45, no. 10, 2002.

[3] D.W Straub and R.J. Welke, “Coping with Systems Risk: Security

Planning Models for Management Decision- Making,” MIS

Quarterly, vol. 22, no. 4, 1998.
[4] G. Dhillon and J. Backhouse, “Information Systems Security

Management in the New Millennium,” Comm. ACM, vol. 43, no. 7,

2000.
[5] R. Anderson, Security Engineering, Wiley, 2001

[6] L. Gordon et al., Ninth Ann. CSI/FBI Computer Crime and Survey

Report, Computer Security Inst., 2004.
[7] M.E. Whitman, “Enemy at the Gate: Threats to Information

Security,” Comm. ACM, vol. 46, no. 8, 2003.

[8] A.G. Kotulic and J.G. Clark, “Why There Aren’t More Information
Security Research Studies,” Information & Management, vol. 41,

2004.

[9] M. Bishop, “What is Computer Security?” IEEE Security &
Privacy, vol. 1, no. 1, 2003.

[10] T. Belchner et al., “Riptech Internet Security Threat Report,”

Riptech, 2002.

[11] “The Internet Business Disruptions Benchmark Report,” Aberdeen

Group, 2004; www.aberdeen.com/summary/report/benchmar k/
ibd.asp.

[12] L.A. Gordon and M.P. Loeb, “The Economics of Information

Security Investment,” ACM Trans.
[13] Information and System Security, vol. 5, no. 4, 2002. A.V.

Feigenbaum, “Total Quality Control,” Harvard Business Rev., vol.

34, no. 6, 1956.
[14] B. Schneier, “Attack Trees: Modeling Security Threats,” Dr.

Dobb’s J., vol. 24, no. 12, 1999.

BIOGRAPHIES

Navaneetha M, Assistant Professor,

Department of CSE, CMR Institute of

Technology, Bangalore. Her area of

interest is network security and had

published many papers in national and

international journals

Dr. M. Shiva Kumar, Professor,

Department of CSE, VSB Engineering

College, Karur, Obtained is doctoral

degree in Network security and had

presented papers in various conferences

and published in various journals

(National & international)

